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Abstract
The area swept out under a one-dimensional Brownian motion till its first-
passage time is analysed using a Fokker–Planck technique. We obtain an exact
expression for the area distribution for the zero drift case, and provide various
asymptotic results for the nonzero drift case, emphasizing the critical nature
of the behaviour in the limit of vanishing drift. The results offer important
insights into the asymptotic behaviour of a number of discrete models. We also
provide a succinct derivation for the distribution of the maximum displacement
observed during a first passage.

PACS numbers: 02.50.−r, 05.10.Gg, 05.40.Jc

1. Introduction

Consider a one-dimensional Brownian motion with drift, whose displacement y(t) evolves in
continuous time via the Langevin equation,

dy(t)

dt
= −ud +

√
Dξ(t) (1)

where ξ(t) is a zero mean white noise source with correlator 〈ξ(t)ξ(t ′)〉 = δ(t − t ′). The
motion starts at y(t = 0) = y0 > 0 and we assume ud � 0 so that the drift is towards zero, i.e.
y = 0. Hereafter we set D = 1 without loss of generality. We are interested in the probability
distributions of two stochastic variables associated with the process: (i) the first-passage time,
tf , at which the process crosses zero for the first time and, more importantly, (ii) the area swept
out by the process till its first-passage time, A = ∫ tf

0 y(t ′) dt ′ (see figure 1). A motivating
factor is to provide insights into the large-scale behaviour of certain lattice polygon models;
the results are also of interest in their own right and should find wider application in other
fields as well.
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Figure 1. Three samples of the process y(t) defined by equation (1) for D = 1 and ud = 0.05.
For the sample shown in bold the initial condition y0 = 10, the first-passage time tf ≈ 72, the
swept-out area A ≈ 866 and the maximum displacement ym ≈ 19.5. For the samples shown
in lighter relief the corresponding values are: (i) y0 = 5, tf ≈ 97, A ≈ 767 and ym ≈ 15.1;
(ii) y0 = 20, tf ≈ 191 (off the scale), A ≈ 3538 and ym ≈ 30.4.

We recall that lattice polygons serve as models for a number of interesting physical
systems, such as ring polymers, vesicles and percolation clusters [1]. For particular subclasses
which are partially directed, including column-convex polygons, bar-graph polygons, staircase
polygons etc [2], it is known that the area–perimeter generating function has a universal scaling
form about a tri-critical point (this form being, essentially, the logarithmic derivative of the Airy
function) [2, 3]. There is powerful evidence that the same basic scaling form also describes the
behaviour of all rooted self-avoiding polygons [4]. It is only for staircase polygons, however,
that there exists a rigorous proof of this result starting from the area–perimeter generating
function itself, and even then the analysis is far from trivial [5]. We shall show that the scaling
behaviour for these partially directed cases is obtained relatively simply from the Brownian
motion perspective, wherein the universality aspect follows naturally. The connection is easily
made; for example, as described in [6], the two arms of a closed rooted staircase polygon can
be thought of as two independent random walks whose trajectories meet for the first time at
the end of the polygon. The difference walk between these two arms then defines, in the limit,
a Brownian motion. Such a picture also makes a direct connection with the directed Abelian
sandpile model proposed in [7], such that tf relates to the avalanche duration and A to the size
of the avalanche cluster [6].

A different area of application arises in queueing theory. Referring to figure 1, one can
identify y(t) with the length of a queue at time t , whereupon tf is the busy period (i.e. the
time until the queue is first empty) and A is the cumulative waiting time experienced by all the
‘customers’ during a busy period. A discussion from the discrete perspective may be found in
[6]. Another variable of interest in queueing theory is the maximum queue length experienced
during a busy period, namely the maximum displacement ym = sup{y(t) : t ∈ [0, tf ]}
observed till the first-passage time (see figure 1). We return to a discussion of this later.

Existing studies of the integral of the absolute value of Brownian motion over the fixed
time interval [0, 1], i.e. A = ∫ 1

0 |y(t ′)| dt ′ with y(0) = 0, have yielded exact results in the limit
of zero drift for bridges (which are conditioned on y(1) = 0) [8, 9], meanders (conditioned
on y(t) > 0 for 0 < t < 1) [10], excursions (conditioned on y(t) > 0 for 0 < t < 1 and
y(1) = 0) [10–12], as well as more general motions [13, 14]. A recent path integral derivation
for meanders and excursions may be found in [15]. The distinguishing features of the present
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problem are the stochastic nature of the domain of integration, [0, tf ], which prevents a trivial
scaling of existing results, and the inclusion of drift, which highlights the critical nature of the
process as ud → 0. We observe that when ud > 0 the process will eventually reach zero with
probability one, and is thus persistent, whereas when ud < 0 the probability of reaching zero is
1 − e−2|ud |y0 < 1 [16]. Since infinite events occur with nonzero probability when ud < 0, the
moments of tf , A etc diverge as ud → 0 from above. The behaviour for ud < 0, conditioned
on the first-passage time being finite, is qualitatively the same as the behaviour for ud > 0.
Therefore we do not consider the ud < 0 case any further.

The examples of the process shown in figure 1 emphasize the fact that the stochastic
variables of interest are conditionally dependent on the initial condition y0, which we exploit
in the derivations that follow. They also give an inkling of the ‘long-tailed’ nature of the
various distributions (particularly the area distribution) when ud is small. Finally, they raise
interesting questions about the nature of the correlations between, say, tf and ym. We comment
further on this at the end of the paper.

2. The Fokker–Planck approach

To calculate the distributions of interest, we first consider a general case where we evaluate
the probability distribution P(T , y0) of the observable,

T =
∫ tf

0
V [y(t ′)] dt ′ (2)

where V [y(t)] is an arbitrary functional of the process y(t) and tf is the first-passage time of
the process. If we can obtain the distribution P(T , y0) for a general V [y(t)], then the different
special cases will follow by choosing the functional V properly. For example, if we choose
V [y] = 1, equation (2) gives T = tf and P(T , y0) gives the first-passage time distribution.
Similarly, the choice V [y] = y provides the distribution of the area T = A = ∫ tf

0 y(t ′) dt ′

under the process till it hits zero for the first time. Below we consider general V [y] and derive
explicit results for the special cases later.

It is useful to consider the Laplace transform with respect to T of the distribution P(T , y0),

P̃ (s, y0) ≡
∫ ∞

0
P(T , y0) e−sT dT =

〈
exp

{
−s

∫ tf

0
V [y(t ′)] dt ′

}〉
(3)

where 〈 〉 denotes an average over all realizations of the process till the first-passage time. We
employ a special backward Fokker–Planck technique that has recently been used in the context
of a particle moving in a random Sinai potential [16, 17]. A typical path of the process over the
interval [0, tf ] is split into two parts: a left interval [0,�t] where the process proceeds from
y0 to y0 + �y = y0 − ud�t + ξ(0)�t in a small time �t and a right interval [�t, tf ] in which
the process starts at y0 + �y at time �t and reaches 0 at time tf . The integral

∫ tf
0 V [y(t ′)] dt ′

is similarly split. Since y(t = 0) = y0, one gets
∫ �t

0 V [y(t ′)] dt ′ = V [y0]�t + O(�t2). Then
equation (3) can be written as

P̃ (s, y0) =
〈
exp

{
−s

∫ tf

0
V [y(t ′)] dt ′

}〉
= 〈exp(−sV [y0]�t)P̃ (s, y0 + �y)〉�y (4)

where we have used the fact that for the right interval [�t, tf ], the starting position is y0 + �y,
which itself is random. The average in the second line of equation (4) is over all possible
realizations of �y. We now substitute �y = −ud�t + ξ(0)�t , expand in powers of �t

and average over the noise ξ(0). We use the fact that the noise ξ(t) is delta correlated, i.e.
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〈ξ(0)2〉 = 1/�t as �t → 0. Thus 〈�y〉 = −ud�t + O(�t2) and 〈�y2〉 = �t + O(�t2),
whereupon one obtains by collecting terms of O(�t),

1

2

∂2P̃ (s, y0)

∂y2
0

− ud

∂P̃ (s, y0)

∂y0
− sV [y0]P̃ (s, y0) = 0. (5)

Note that in deriving equation (5) we have only required that the noise ξ(t) has zero mean and
is delta correlated, i.e. 〈ξ(t)ξ(t ′)〉 = 0 for t 
= t ′, whereas 〈ξ(t)2〉 = 1/�t . In other words
the detailed nature of the noise distribution is irrelevant. This explains why many different
discrete lattice models may be mapped onto the present problem in the appropriate limit.

The differential equation (5) is valid in the range y0 ∈ [0,∞] and satisfies the following
boundary conditions. When the initial position y0 → 0, the first-passage time tf must
also tend to zero. Hence the integral

∫ tf
0 V [y(t ′)] dt ′ vanishes and from the definition in

equation (3), we get P̃ (s, y0 → 0) → 1. When the initial position y0 → ∞, the first-passage
time tf → ∞, hence the integral

∫ tf
0 V [y(t ′)] dt ′ also diverges in this limit, at least when

V [y] is a non-decreasing function of y. The definition in equation (3) then gives the boundary
condition, P̃ (s, y0 → ∞) → 0. For completeness, we also note the normalization condition,
P̃ (s → 0, y0) → 1.

3. Analysis of the special cases

We now examine the special cases. First, let us consider the first-passage time distribution,
for which we need to choose V [y] = 1, so that T = tf from equation (2). The solution of the
differential equation (5) that satisfies the boundary conditions can easily be obtained,

P̃ (s, y0) = exp(udy0) exp
(−y0

√
u2

d + 2s
)
. (6)

Inverting the Laplace transform, we get the required first-passage time distribution, which was
also presented in [16],

P(tf , y0) = 1√
2π

y0

t
3/2
f

exp(−(y0 − udtf )2/2tf ) (7)

valid for all y0 � 0 and tf � 0. When ud = 0 and in the limit tf � y2
0 , the distribution has

an algebraic tail, P(tf ) ∼ t
−3/2
f , which implies that all moments are infinite. When ud > 0,

the moments are finite and may be evaluated exactly as

〈
t kf

〉 =
(

y0

ud

)k (
2

π

)1/2

(udy0)
1/2 eudy0Kk− 1

2
(udy0) (8)

where Kν(z) is a modified Bessel function. In deriving equation (8) we have made use of the
identity [18], ∫ ∞

0
x−ν−1 e−αx−β/x dx = 2

(
α

β

)ν/2

Kν(2
√

αβ). (9)

Despite its appearance, equation (8) reduces to a finite polynomial in udy0 for integer k; e.g.
〈tf 〉 = y0/ud and

〈
t2
f

〉 = y0
/
u3

d + y2
0

/
u2

d . Note that when the diffusion is small
〈
t kf

〉 ≈ (y0/ud)
k ,

which is expected since then y(t) ≈ y0 − udt so that tf ≈ y0/ud for the dominant paths. One
can determine the divergence of the moments as ud → 0 by using the small z expansion of
Kν(z) ∼ 	(ν)2ν−1z−ν for ν > 0,

〈
t kf

〉 ∼ y0
	

(
k − 1

2

)
2k−1

√
π

1

u2k−1
d

. (10)
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The first-passage time distribution in equation (7) can, of course, be derived by more
conventional methods. The derivation here, however, serves to highlight the ease with which
the present method may be applied, and illustrates some of the critical aspects of the problem in
the ud → 0 limit. A simple transformation suffices to capture the perimeter scaling behaviour
for staircase polygons (see e.g. [6]).

Next we turn to the central question of interest to us, namely the distribution of the area
A = ∫ tf

0 y(t ′) dt ′ swept under a Brownian motion till its first-passage time. To evaluate the
distribution P(A, y0), we choose V [y] = y in equation (2) so that T = A. The second-order
differential equation (5) with V [y0] = y0 may be simplified by making the transformation
P̃ (s, y0) = eudy0 P̂ (s, y0) to remove the first-order derivative. The resulting equation for
P̂ (s, y0) is simply the Schrödinger equation for a quantum particle moving in a uniform field.
The solution that matches the boundary conditions gives the required result,

P̃ (s, y0) = eudy0
Ai

(
21/3s1/3y0 + u2

d

22/3s2/3

)
Ai

( u2
d

22/3s2/3

) (11)

where Ai(z) = π−1√z/3K1/3
(

2
3z3/2

)
is the Airy function [18]. Equation (11) is our main

result. It is evidently more complicated than the corresponding result for the first-passage time
distribution given by equation (6). To make further progress, we consider the cases ud = 0
and ud > 0 separately.

When ud = 0 one has P̃ (s, y0) = 32/3	
(

2
3

)
Ai(21/3s1/3y0), the inversion of which can be

carried out exactly using the identity in equation (9). This allows us to obtain the distribution
P(A, y0) for all A � 0 and all y0 � 0,

P(A, y0) = 21/3

32/3	
(

1
3

) y0

A4/3
e−2y3

0 /9A, ud = 0. (12)

We are unaware of this result having been written down explicitly and in full before. For
A � y3

0 , the distribution has an algebraic tail,

P(A, y0) ∼ 21/3

32/3	
(

1
3

) y0

A4/3
. (13)

A derivation of this tail from the staircase polygon perspective is given in [6]. The power-law
behaviour can be explained using a simple scaling argument (see also [7]). When ud = 0,
typically one expects the scaling y(t) ∼ √

t for large t. It follows from the definition
A = ∫ tf

0 y(t ′) dt ′ that the area typically scales as A ∼ t
3/2
f for large tf , and since P(tf ) ∼ t

−3/2
f

from equation (7), it follows immediately that P(A) ∼ A−4/3 for large A. Note, however,
that this argument does not reproduce the correct amplitude in equation (13), not can it reveal
the exponentially singular behaviour as A → 0. The result in equation (12) is in excellent
agreement with the results of a numerical simulation of the process in equation (1) with ud = 0,
as shown in figure 2.

The exact inversion of equation (11) in terms of standard functions appears to be
impossible when ud > 0. We therefore focus on deriving: (i) the behaviour of the
moments as ud → 0 and (ii) the tail of the distribution P(A, y0) for large A, which may
be deduced from observing how the moments diverge. In general, the moments are given by
〈Ak〉 = (−1)k∂k

s P̃ (s, y0)|s=0. Thus, for example, the mean area is given by 〈A〉 = y0
/

2u2
d +

y2
0

/
2ud . To determine the behaviour of the kth moment as ud → 0, we simultaneously take

the limit s → 0 in equation (11) in such a way that the scaling variable τ ≡ u2
d

/
22/3s2/3

remains fixed and large. Treating udy0 as a small expansion parameter one therefore has

P̃ (s, y0) = 1 + udy0 − udy0√
τ

F (τ) + O((udy0)
2) (14)
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Figure 2. The zero drift distribution P(A, y0) obtained numerically by simulating the process y(t)

in equation (1) with y0 = 1 compared with the analytical expression in equation (12) (superimposed
solid line). The numerical histogram is obtained from 105 samples with a bin size of 0.01. As
presented, both curves are normalized with respect to a cut-off area A∗ = 100, following the
procedure described in [17].

where F(τ) = −Ai′(τ )/Ai(τ ) and F(τ) > 0. This is the exact scaling form found in the
asymptotic analysis of the area–perimeter generating function of staircase polygons. Previous
derivations either assume a scaling form in conjunction with dominant balance techniques
to analyse a functional equation for the generating function [2, 3], or require sophisticated
asymptotic methods to analyse a q-series representation of the generating function itself
[5]. Since F(τ) ∼ ∑k=∞

k=0 akτ
−(3k−1)/2 for large τ , with a0 = 1 [13, 19], equation (14)

can be viewed as a power series in s. The area moments may therefore be determined in
straightforward fashion as ud → 0,

〈Ak〉 = y0(−1)k+1ak2kk!
1

u3k−1
d

[1 + O(udy0)]. (15)

The coefficients ak obey a quadratic recurrence relation,

ak = −1

2

k−1∑
i=1

aiak−i −
(

3k

4
− 1

)
ak−1 (16)

for all k � 2 with a1 = 1/4. We note that this recurrence relation also occurs in studies of
extremal distributions [11, 15, 20] and in various other enumeration problems in computational
science and graph theory [19]. Although an explicit expression for ak is unknown, its
asymptotic behaviour as k → ∞ is known so that as ud → 0 and k → ∞,

〈Ak〉 ∼ y0

√
2

π

(
3

8

)k

	

(
2k +

1

2

)
1

u3k−1
d

. (17)

This result is sufficient to determine the corresponding tail of the area distribution P(A, y0)

as A → ∞, which is given by

P(A, y0) ∼ y0√
π

(
2

3

)1/4

u
7/4
d A−3/4 exp

{
−

(
8

3

)1/2

u
3/2
d A1/2

}
. (18)

It is readily verified that equation (18) implies equation (17). That equation (18) is, in an
appropriate sense, ‘unique’ follows from the fact that any candidate distribution whose moment
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sequence satisfies equation (17) is uniquely determined by its moment sequence, which follows
from the well-known Carleman criterion, with the corollary that all such distributions must
be asymptotically equivalent as A → ∞ [6]. The prefactor A−3/4 in equation (18) was also
recently identified in [21] for staircase polygons and column-convex polygons of fixed area
with perimeter-dependent weights. Technically, equation (18) is only valid for udy0 small, but
it is a salient result nonetheless. The direct inversion of equation (11) might offer the prospect
of extending beyond this regime, but the technical difficulties are formidable.

4. Characterizing the maximum displacement

We now return to the question posed earlier relating to the distribution of the maximum
displacement ym observed till the first-passage time (see figure 1). The particular Fokker–
Planck technique we employ may be used to derive this succinctly and elegantly. The
equivalent problem for the Edwards–Wilkinson fluctuating interface model has been solved
recently and provides a rare example of an exact distribution for the maximum of a set of
strongly correlated random variables [15, 20]. The present problem may be viewed similarly.
To proceed, imagine summing over all paths for which the maximum displacement Y � ym,
by first stepping from y0 to y0 + �y, followed by again summing over all paths for which
Y � ym. In this way, one can relate the probability Pr(Y < ym|y0) to itself under all
possible evolutions with respect to the initial condition y0. The Markov nature of the process
means that Pr(Y < ym|y0) = 〈Pr(Y < ym|y0 + �y)〉�y , where the average 〈 〉�y defined in
equation (4) effects the sum over all the weighted possibilities of getting from y0 to y0 + �y.
Expanding as before and averaging gives[

1

2

∂2

∂y2
0

− ud

∂

∂y0

]
Pr(Y < ym|y0) = 0 (19)

with boundary conditions Pr(Y < ym|y0 = 0) = 1 and Pr(Y < ym|y0 =ym) = 0. The solution
is

Pr(Y < ym|y0) = eudy0
sinh(ud(ym − y0))

sinh(udym)
, y0 � ym. (20)

This is the probability that a one-dimensional random walker on the interval [0, ym] first exits
via the boundary at y = 0. The required distribution may be obtained in a straightforward
manner by evaluating P(ym, y0) ≡ (d/dym) Pr(Y < ym|y0),

P(ym, y0) = ud eudy0
sinh(udy0)

sinh2(udym)
, ym � y0. (21)

When ud = 0, P(ym, y0) = y0
/
y2

m for ym � y0 and all the moments are infinite. The
maximum displacement for zero drift therefore has a power-law distribution (inverse square
law), which can be justified as before using a simple scaling argument. Thus, typically,
ym ∼ t

1/2
f , and since P(tf ) ∼ t

−3/2
f , it follows that P(ym) ∼ y−2

m . When ud > 0 the moments
are finite and, in particular, the mean value is given by

〈ym〉 = y0 +
e2udy0 − 1

2ud

log

(
1

1 − e−2udy0

)
. (22)

The logarithmic divergence as ud → 0 is somewhat unexpected and should be contrasted
with the power-law divergence of the mean first-passage time 〈tf 〉 ∼ u−1

d and the mean area
〈A〉 ∼ u−2

d . We note that 〈ym〉〈tf 〉 < 〈A〉 < 〈ymtf 〉 as ud → 0, where the last inequality
follows because A < ymtf with probability one. Thus the covariance, cov(ym, tf ), diverges
strongly as ud → 0, implying a close correlation between ym and tf . An exact derivation
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would be of interest. It is also worth noting that equations (21) and (22) establish the behaviour
of the maximum avalanche width in the canonical directed Abelian sandpile model [6, 7]. We
are unaware of such results having been presented in this context before.

5. Summary

Using a special backward Fokker–Planck technique, the distributions of various stochastic
variables associated with a one-dimensional Brownian motion till its first-passage time have
been analysed. The results help us to explain the asymptotic behaviour of various discrete
lattice models which arise naturally in statistical physics and queueing theory. Regarding
the first-passage time and maximum displacement distributions, the results are complete.
Regarding the area distribution, we have solved the zero drift case exactly, and presented
asymptotic results for when the drift is nonzero. The remaining outstanding challenge is to
invert equation (11) exactly.
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